Home | contact | science | math | handbook | function | help | example | 中文

Math Handbook Calculator

= `sum_0^oo ` mathHandbook.com





Input:
`definition(L(x,a,b))`

Compute:
$$$$definition:
$$L(x,a,b)$$

Result:
$$\frac{1}{\Gamma (a)}\ \int _0^\infty e^{(1+(-b))\ y}\ (\frac{1}{e^{y}+(-x)})\ (y^{-1+a})\ dy$$

LaTeX:
\frac{1}{\Gamma (a)}\ \int _0^\infty e^{(1+(-b))\ y}\ (\frac{1}{e^{y}+(-x)})\ (y^{-1+a})\ dy

$$$$definition:
$$L(x,a,b) == \frac{1}{\Gamma (a)}\ \int _0^\infty e^{(1+(-b))\ y}\ (\frac{1}{e^{y}+(-x)})\ (y^{-1+a})\ dy$$




zoom graph by mouse wheel.

Home | list | about | forum | wiki | contact | copyright | index | 中文